MATH 53, QUIZ 1: Stewart 10.1-10.3

Be sure to show neat, organized, complete work in the space provided.

1. Find a Cartesian equation for the polar curve $r=6 \sec \theta$, and sketch a picture ${ }^{*}$ of it in the $x y$-plane.

$$
\begin{gathered}
r=\frac{6}{\cos \theta} \\
r \cos \theta=6 \\
x=6
\end{gathered}
$$

Cartesian equation: $\quad x=6$
2. Find a Cartesian equation for the polar curve $r=-5 \cot \theta \csc \theta$, and sketch a picture of it in the $x y$-plane.

$$
\begin{aligned}
r & =-5 \frac{\cos \theta}{\sin \theta} \frac{1}{\sin \theta} \\
r \sin \theta & =-5 \frac{r \cos \theta}{r \sin \theta} \\
y & =-5 \frac{x}{y} \\
y^{2} & =-5 x
\end{aligned}
$$

Cartesian equation: \qquad

[^0]3. The curve given by $x=\sin (2 t), y=\sin (3 t+\sin (t))$ has two tangent lines at the point $(x, y)=(0,0)$. Find their slopes.
Note that the curve repeats every 2π, so it suffices fo consicler the t-values at which $(x, y)=(0,0)$ such that $0 \leq t<2 \pi$. Solving $\sin (2 t)=0$ gives $t=0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}$.

But of these values of $t, \quad \sin (3 t+\sin (t))$ is only 0 for $t=0, \pi$, not for $\frac{\pi}{2}$ and $\frac{3 \pi}{2}$.
So we need to compute $\left.\frac{d y}{d x}\right|_{t=0}$ and $\left.\frac{d y}{d x}\right|_{t=\pi}$.

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\cos (3 t+\sin t)(3+\cos t)}{\cos (2 t) 2}
$$

(2) $t=0: \frac{\cos (0+0)(3+\cos 0)}{\cos (0) 2}=\frac{4}{2}=2$

20 $t=\pi: \frac{\cos (3 \pi)(3+\cos \pi)}{\cos (2 \pi) 2}=\frac{(-1)(2)}{(1)(2)}=-1$
\qquad and \qquad

Feedback: If you have any feedback you'd like to share, please write it here. If there are any specific topics you are confused about, feel free to write them here as well.

[^0]: *These will only be judged for qualitative correctness.

